

Gasification Redefining Clean Energy

Welcome at Bellwether Gasification Technologies Ltd.

Your Partner for the Development, Design and Construction of Waste Gasification plants

European waste legislation – New EU- amendment Framework directive 2006/12/EG

Priority of energy recovery and use of local resources prior to the purely disposal of waste. Following goals get joined with the energetically recovery of waste:

- Substitution of fossil fuels like fuel oil, fuel gas or coke (preservation/ safeguarding of resources)
- Emission reduction on climatic effected CO₂ (climate protection)
- Decrease in the dependency of global energy markets connected with cost savings
- ✤ Increasing in the flexibility of the waste management by reduction of the residual waste
- **NO** energy recovery according to the Frame directive 2006/12/EG: Waste incineration, MBT

Energy recovery at the time solely in co-firing or surrogate fuel power plants.

Mechanical Biological Treatment - MBT

Waste treatment Incineration / IMG

Waste treatment comparison

Waste as energetically significant resources

As feedstock we can use all caloric resources from all input materials:

- Unsorted municipal waste,
- Industrial waste (e.g. car tires, residuals from recycling and production),
- Agricultural residuals and biomass ,
- Hazardous waste.

Potential in Europe:

300.000.000 tons waste per year in Europe are neither treated nor recycled; To use these recourses can replace 300.000.000 tons coal and save around 9 million tons CO_2 emission per year.

This resources are not used because of:

- No capacities for co-firing of the refused derived fuels
- Incineration is limited on the input quality (Chlorine content, caloric value and energy efficiency)

Thermal recycling via IMG and the products

Our technology recover:

- ✓ Organic components
- ✓ Inorganic components
- ✓ Water in the input
- ✓ Metals

Biomass Gasification according to the IMGtreatment Energy of 1Mg biomass

The patented IMG-Technology is an autothermic four-steps gasification followed by a thermal gas-treatment with plasma conditioning.

The resulting heat is re-used in the process to pre-heat the gas-streams that support the gasification process.

The resulting syngas is a clean low caloric fuel gas, that can be directly utilized in gas engines. The slag is inert.

Gasification Technologies Ltd. Integrated Multifuel Gasification - IMG

4-step

4-step gasification

Bellwether

- Input/feeding
- Drying
- Gasification
- Slag Vitrification

Plasma Torch

 Thermal gas cleaning with plasma conditioning,

- All tars are decomposed,
- All toxic radicals are destroyed,
- In a reductive atmosphere in the absence of oxygen no NOx is produced,
- No dioxins are generated,
- Clean gas with only simple molecules is the end product.

The gas volume of the IMG-process corresponds to approx. 25 - 30 % of the gas volume with incineration.

Therefore the emission quantity and cost of the gas cleaning are subsequently lower.

3 Steps Scrubber

3-Steps scrubber

- ✓ Dust removal
- ✓ Heavy metal removal

- ✓ Acid removal
- ✓ H₂S removal
- Droplet removal
- ✓ Gas cooling

Energy production

The components H2 and CO of the Singas substitute natural gas, or other fuels directly in the boiler of power plants or produce energy in gas engines.

The net-efficiency by using of gas engines average 40%.

By additional using of cogeneration the net efficiency average 55%.

By using the heat the net efficiency average is 80%.

Energy production - Net efficiency

Bellwether Gasification Technologies Ltd

<mark>High temperature processes</mark>

Waste is our fuel

With competence and Know-how we build turn key power plants.

Our benefits:

- Consulting
- Basic Engineering
- Detail Engineering
- Manufacture and
- erection
- Maintenance

"We set new standards for economical and environmental friendly recovering of waste" Our technology recovers and recycles:

- Economical
- Environmental friendly
- Sustainable
- Efficient
- Flexible

Commissioning: Nov 2008

- Construction time: 14 month
- capacity: waste (MSW) 13Mg/h; LHV=11MJ/kg
- Produced syngas: 188 Mio m³/year; LHV=4,5 MJ/m³
- Thermal energy: 234.000 MWh/year
- Syngas is transported into the local power plant and replaces 28.000 Mg/year of coal

Continuous operation with the same gas quality achieved with:

- feeding control
- primary air control
- secondary air control
- gas recirculation

IMG Process - Inert Slag

Inert Slag

- Municipal waste
- Industrial waste
- Mix waste

<u> April – May 2008</u>

- Hall is finished (650m²)
- Erection of the IMG-gasifier and the heat exchanger (Height = 14m)

Bellwether

- Cooling water circuit
- Waste water treatment
- Control room

Precipitation Flocculation Sedimentation Capacity: 7m³/h

Classifying Shredder Feeding Capatity:13Mg/h

Unionization station

Main characteristics of the process:

- Compact Design
- Full automatically function
- Low place requirement
- High Quality

Bellwethe

Results

- Efficiency of the gasifier 80%-85%
- Maximum waste processed 12 t/h
- Quantity of sin gas 14.700 Nm³/h
- Heating value of the syngas 4,2 MJ/Nm³
- Energy consumption 1,4 MW
- Power consumption in the Plasma torch 400 KW

Bellwether

pollutant concentration, average value of day	Unit	Concentration
Dust	Mg/m ³ i.N.tr.	< 3
HCI	Mg/m³ i.N.tr.	< 2
HF	Mg/m³ i.N.tr.	< 0,1
SOx (as SO ₂)	Mg/m³ i.N.tr.	< 25
NOx (as NO ₂ , 95% NO)	Mg/m³ i.N.tr.	< 20
NH ₃	Mg/m³ i.N.tr.	< 0,2

Bellwether

Fuel Gas Composition	clean
CO %	19-23,1
CO ₂ %	7-8,7
H ₂	13-17,6
H ₂ O %	5-8,5
N ₂	46-49,6
Other	
Total	100